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Fokker-Planck description of electron and photon transport in homogeneous media
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Fakultät für Physik, Universita¨t Konstanz, P.O. Box 5560, D-78434 Konstanz, Germany

James Paul Holloway
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104

~Received 18 November 1996!

Starting from a Fokker-Planck description of particle transport, which is valid when the scattering is for-
wardly peaked and the energy change in scattering is small, we systematically obtain an approximate diffu-
sionlike equation for the particle density by eliminating the direction variableV̂ with an elimination scheme
based on Zwanzig’s projection operator formalism in the interaction representation. The elimination procedure
closely follows one described by Grigolini and Marchesoni@in Memory Function Approaches to Stochastic
Problems in Condensed Matter, edited by Myron W. Evans, Paolo Grigolini, and Guiseppe P. Parravicini,
Advances in Physical Chemistry, Vol. 62~Wiley-Interscience, New York, 1985!, Chap. II, p. 29#, but with a
different projection operator. The resulting diffusion equation is correct up to the second order in the coupling
operator between the particle direction and position variable. The diffusion coefficients and mobility in the
resulting diffusion equation depend on the initial distribution of the particles in direction and on the path length
traveled by the particles. The full solution is obtained for a monoenergetic and monodirectional pulsed point
source of particles in an infinite homogeneous medium. This solution is used to study the penetration and the
transverse and longitudinal spread of the particles as they are transported through the medium. Application to
diffusive wave spectroscopy in calculating the path-length distribution of photons, as well as application to
dose calculations in tissue due to an electron beam are mentioned.@S1063-651X~97!11706-8#

PACS number~s!: 02.50.2r, 05.20.Dd, 52.65.Ff, 87.53.Fs
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I. INTRODUCTION

Electron transport in tissue has received increasing at
tion in recent years because of its importance for determin
the dose delivered during the treatment of localized ma
nancies with well-collimated electron beams. A quantitat
knowledge of the spread of the beam before reaching
target tumor, as well as the expected dose delivered by
electrons to both the healthy and malignant tissues, is o
ously essential in the planning of an appropriate treatm
procedure.

Such dose calculations have been based, until now, on
Fermi-Eyges @1,2# theory of pencil-like electron beams
However, this theory is valid only during the electrons’ in
tial penetration into the tissue, before the beam has un
gone appreciable spread transverse to its primary directio
travel. In the Fermi-Eyges theory it is assumed that electr
in the beam lose their energy continuously, suffering a la
number of small-angle collisions without changing their in
tial direction significantly, and the beam, therefore, initia
maintains its overall forward direction of travel. But at th
later stages of the beam’s transport the direction of trave
the electrons becomes randomized, so that their mean ve
ity approaches zero while their mean position approache
fixed point. This point defines the penetration distance of
collimated beam from its injection location. During this fin
stage of transport, the electrons diffuse isotropically ab
their fixed mean position, and continue losing their kine

*Permanent address: Dept. of Nuclear Engineering and Radio
cal Sciences, University of Michigan, Ann Arbor, MI 48109-210
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energy during this random Brownian motion. The Ferm
Eyges theory is, however, not applicable to the description
electron motion in its final diffusive stage, and it is increa
ingly less applicable during the transition from penc
beamlike to diffusive behavior. Clearly, a more comprehe
sive and tractable theory is needed for the more accu
calculation of electron dose rates in tissue.

Some progress has recently been made in this directio
Akcasu and Larsen@3# and by Larsenet al. @4# by assuming
that the electron flux satisfies a diffusion equation in config
ration space with time-dependent transverse and longitud
diffusion coefficients, and a time-dependent mobility. T
diffusion coefficients and the mobility are explicitly obtaine
@3# by requiring that the proposed diffusion equation exac
reproduce the true first and second spatial moments of
electron distribution function. These moments are calcula
starting from the Fokker-Planck description of electron tra
port in an infinite homogeneous isotropic medium in R
@3#, and directly from the Boltzmann equation in Ref.@4# by
using the so called ‘‘transport space-angle moment’’ meth
Numerical comparison with Monte Carlo calculations@4# for
electron beams show that the new diffusion equation yie
accurate closed-form expressions for depth-doses and ra
dose profiles.

In this paper we first present a systematic derivation of
exact diffusion equation for the scalar electron flux in
homogeneous medium, including the effect of particle a
sorption. We start from the Fokker-Planck equation for t
energy-dependent angular electron flux, and exactly eli
nate the effects of absorption and the energy variable for
case of monoenergetic initial data. We next eliminate
direction variable using the Zwanzig@5,6# projection opera-
i-
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6754 55A. ZIYA AKCASU AND JAMES PAUL HOLLOWAY
tor formalism in the interaction representation, resulting
an exact diffusionlike equation with memory terms. We th
show that the diffusion equation form which was assumed
Refs. @3# and @4# actually follows from this exact form by
expanding the memory function in the projection opera
formalism in powers of the coupling between the angle a
position variables. The elimination procedure used in
present derivation is one of the methods often referred to
the ‘‘elimination of fast variables’’ in the literature@7,8#. The
particular elimination method employed in this paper is
extension of the elimination method developed in Grigol
and Marchesoni@8#.

Photon transport, on the other hand, has become an a
field of both theoretical@9# and experimental@10# research
over the past decade, especially in connection with diffus
wave spectroscopy. The diffusive character of the light
ters in the analysis of the time correlation function of t
scattered light, and is crucial in the understanding of
optical experiments designed to study dynamic propertie
particles suspended in fluids, such as their diffusion coe
cient. The central issue in the theory of diffusive wave sp
troscopy is the calculation of the path-length distribution
multiply scattered photons for a given linear displacem
from their injection point. The current theoretical modelin
@9# of the photon flux in diffusive wave spectroscopy a
sumes that the beam of light has fully randomized in dir
tion about a fixed penetration depth, so that standard iso
pic diffusion theory is applicable; in contrast to the Ferm
Eyges theory which holds during the initial penetration
radiation into the medium, this isotropic diffusion is tru
only in the final stage of the photon transport process. T
modified diffusion equation derived in this paper is app
cable to both the initial forward directed photon beam and
the eventual isotropic photon diffusion, and thereby provid
the missing connection between these two behaviors.

It should be mentioned at the outset that the Fokk
Planck description of photon transport presented in this
per in terms of a particle transport equation is approxima
and applicable only to thediffusivetransport of unpolarized
photons. It does not take into account the complexities a
ing from the strong polarization dependance of photon s
tering, which would require a transport equation that
cludes photon polarization as another vector part
property, like direction of motion. However, it describes t
gradual transition from the coherent to incoherent~or diffu-
sive! regime more accurately than the usual treatment
wave transport as a superposition of the coherent and d
sive components@9# as demonstrated in this paper.

II. FOKKER-PLANCK DESCRIPTION
OF PARTICLE TRANSPORT

We start with the Fokker-Planck description@11,12# of
electron transport, which can be obtained from the conv
tional linear Boltzmann equation by assuming that the s
tering is forwardly peaked, and that the energy change
scattering is small@13#. The derivation of the Fokker-Planc
equation is conventional and well documented@11–14#; we
shall not repeat it here. For the present application, we w
the Fokker-Planck equation as
n
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]t
52vV̂•“n2vSan1

]

]E
@Svn#2

vS̄

2
L2n, ~1!

where n(x,E,V̂,t) is the position, energy, direction, an
time-dependent particle density;S(E) is the energy loss pe
unit distance, or stopping power;Sa(E) is the macroscopic
absorption cross section;S̄5S tr2Sa , whereS tr(E) is the
transport cross section; the vectorV̂ is the unit vector in the
direction of particle velocity;v(E) is the particle speed cor
responding to the particle energyE; and L2 is the angular
momentum operator defined by

L252F ]

]m
~12m2!

]

]m
1

1

12m2

]2

]f2G , ~2!

wherem is the cosine of the polar angle describing the u
vector V̂, andf is the azimuthal angle. The sign ofL2 is
chosen such that its eigenfunctionsYlm(V̂), i.e., the spheri-
cal harmonics, satisfyL2Ylm5 l ( l11)Ylm . The definitions
of stopping power,S(E), and penetration cross sectio
S̄(E), in terms of the differential cross sectionSs are

S~E!5E
0

`

dE8E
4p
dV̂8~E2E8!Ss~E→E8,V̂8•V̂! ~3!

S̄~E!52pE
0

`

dE8E
21

1

~12m!Ss~E→E8,m! ~4!

III. ELIMINATION OF ABSORBTION AND ENERGY

The energy dependance and absorbtion effects can
completely eliminated from Eq.~1! in the case of a monoen
ergetic initial distribution at energyE0 . To do so, let us first
define the nonabsorbtion probability

p~E!5expF2E
E

E0 Sa~E8!

S~E8!
dE8G ~5!

and use it to rewrite Eq.~1! as

]n

]t
52vV̂•“n1p

]

]E FSnvp G2
vS̄

2
L2n. ~6!

Now write

n~x,E,V̂,t !5d@E2E„s~ t !…#p~E! f „x,V̂,s~ t !…, ~7!

where f will be a function to be determined, andE(s) is the
energy of a particle that has traveled a path lengths, which
is given by

dE
ds

52S~E! ~8!

along with the initial conditionE(0)5E0 . Also note that we
can write s(t) as the path length traveled in timet by a
particle starting at energyE0 , and thatds/dt5v„E(s)….
Now, substituting the form ofn from Eq.~7! into Eq.~6! and
noting that
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]

]E
@d„E2E~s!…v~E!S~E! f #

5d8„E2E~s!…v„E~s!…S„E~s!…f , ~9!

yields the required equation forf

] f

]s
52V̂•“ f2

S̄„E~s!…

2
L2f . ~10!

Equation~10! is also of Fokker-Planck form but for the re
duced functionf (x,V̂,s); it is easier to handle than th
Fokker-Planck equation for the full direction-dependant d
sity n(x,E,V̂,t). It can be interpreted as the one-spe
Fokker-Planck equation for the angular particle density
the absence of absorption, and its solution provides us w
the solution of Eq.~1! for the case of monoenergetic initia
data

n~x,E,V̂,0!5d~E2E0! f ~x,V̂,0!. ~11!

Frequently we are not interested in the direction informati
but are instead satisfied by a knowledge of the directi
independent density

N~x,E,t !5E
4p
n~x,E,V̂,t !dV̂.

We will therefore seek an equation for the energ
independent and direction-independent particle density
fined by

F~x,s!5E
4p
f ~x,V̂,s!dV̂, ~12!

since from this we can compute

N~x,E,t !5d@E2E„s~ t !…#p~E!F„x,s~ t !…. ~13!

IV. EXACT ELIMINATION OF THE ANGULAR
VARIABLE

The objective of this section is to obtain an exact equat
for the scalar densityF(x,s) by eliminating the angular de
pendence in the effective one-speed densityf (x,V̂,s) which
satisfies Eq.~10!. We do so through an extension of th
Zwanzig projection operator method@8#. The extension tha
we require for our application to Eq.~10! is described in Sec
IV A, and applied in Sec. IV B.

A. Elimination of irrelevant variables

In the mathematical description of many physical syste
there is often an interplay of mechanisms involving vas
different relaxation times. By eliminating the irrelevant va
ables, which are usually responsible for fast variations o
scale of no interest, we can sometimes obtain a tract
approximate description of the slow scale evolution of
system. Numerous elimination methods have been develo
for a variety of applications, and many of these were
viewed by van Kampen@7#. One of these methods involve
Zwanzig’s projection operator technique@5,6# in the interac-
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tion representation, and was explained in detail by Grigo
and Marchesoni@8#, who also provided several illustrativ
examples and physical applications. We shall modify t
method for application to the problem at hand.

We abstract the problem as follows: assume that the
tem evolution is described by an equation of the form

d f

ds
5Laf1Lb~s! f1Lc~s! f , ~14!

where the operatorsLa and Lb(s) act on different sets of
independent variablesa andb, which we shall call the rel-
evant and irrelevant variables, respectively; because they
on different independent variables the operatorsLa and
Lb(s) commute. We also allowLb to depend explicitly on
‘‘time’’ s. The operatorLc(s) need not commute with eithe
La or Lb(s), and will be called the coupling operator. Fro
Eq. ~14! we wish to obtain an equation for the reduced d
tribution F(a,s)5* f (a,b,s)db.

The allowed time dependance ofLb is a slight deviation
from Grigolini and Marchesoni’s derivation, and is needed
our application to the Fokker-Planck equation. The time
pendance ofLc is also an extension of Grigolini an
Marchesoni, but is not required for our application; we i
clude it only because it requires no additional work to do
Note that in the expressions below we shall avoid noting
functional dependance of various quantities on the indep
dent variables, especiallya andb, except when it seems ex
plicitly useful to do so.

To introduce the interaction representation letU(s) be the
solution of

d

ds
U~s!5@La1Lb~s!#U~s!, ~15!

with the initial conditionU(0)5I where I is the identity
operator. BecauseLa and Lb(s) commute, the operato
U(s) can be factored asU(s)5Ua(s)Ub(s)5Ub(s)Ua(s),
whereUa andUb describe the decoupled evolution of thea
andb variables; specifically

dUa

ds
5LaUa , ~16!

with Ua(0)5I , and

dUb

ds
5Lb~s!Ub , ~17!

again with identity initial data. In the interaction represen
tion we then writef (s)5U(s) f̃ (s), and substituting this into
Eq. ~14! discover thatf̃ must satisfy the equation

d

ds
f̃ ~s!5L~s! f̃ ~s!, ~18!

with

L~s!5U~s!21Lc~s!U~s!, ~19!

whereU(s)21 denotes the inverse ofU(s).
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Because our interest in the system will be satisfied b
knowledge of the reduced distributionF(s), we shall intro-
duce a projection of the distributionPf(s) that is easily re-
lated toF(s). In particular, the projection acts on any fun
tion of a andb according to

Ph~a,b!5g~b!E h~a,b!db, ~20!

whereg is a function ofb only and satisfies*g(b)db51, so
thatP25P is satisfied. The choice of the functiong shall be
dictated by the initial condition onf , as described below
This projection has the property thatPLa5LaP, and we
shall assume also thatPLb(s)50, which is the case for ou
application.

LetQ5I2P be the complement of the projectionP, and
let us represent the solution of Eq.~18! as f̃5P f̃1Q f̃ .
Equation ~18! can then be written as the pair of couple
equations

dP f̃

ds
5PL~s!P f̃1PL~s!Q f̃ , ~21!

dQ f̃

ds
5QL~s!P f̃1QL~s!Q f̃ . ~22!

At this stage we require that the initial distribution functio
f (0) satisfiesPf(0)5 f (0); this implies that

f ~a,b,0!5g~b!E f ~a,b,0!db5g~b!F~a,0!.

We are thus assuming that the initial dataf (0) is separable
in a andb, and that the functiong appearing in the projection
operator is the normalized initial distribution of theb vari-
ables. In contrast Grigolini and Marchesoni make the cho
g5geq where Lbg

eq50; this they could do because the
operatorLb did not depend on time. Our projection integrat
out theb dependance and replaces it with that of the init
distribution, rather than the decoupled equilibrium distrib
tion of b variables.

With our choice ofg it then follows thatP f̃(0)5 f (0),
and we thus haveQ f̃(0)50. We therefore solve Eq.~22! for
Q f̃(s) with zero initial data, yielding

Q f̃5E
0

s

U~s,s8!QL~s8!P f̃~s8!ds8, ~23!

whereU(s,s8) is the operator satisfying

d

ds
U~s,s8!5QL~s!U~s,s8!, ~24!

with dataU(s8,s8)5I . Using this expressionQ f̃ in Eq. ~21!
yields an equation for the functionP f̃

dP f̃

ds
5PL~s!P f̃1E

0

s

PL~s!U~s,s8!QL~s8!P f̃~s8!ds8.

~25!
a

e

l
-

The value of this equation lies in our ability to convert it in
an equation forPf , rather than forP f̃ . This is possible when
PLb(s)50, andP andLa commute, as we required abov
for in this caseP commutes withUa anddPUb /ds50 by
Eq. ~17!. This latter implies thatPUb(s)5PUb(0)5P, and
thereforePUaUb5UaP. HencePf5PU f̃5UaP f̃ , and we
can thus uniquely relatef̃ to Pf .

If we differentiatePf5UaP f̃ with respect to times, and
use the definition ofUa we discover that

dP f

ds
5LaUa~s!P f̃1Ua~s!PL~s!P f̃

1E
0

s

Ua~s!PL~s!U~s,s8!QL~s8!P f̃~s8!ds8.

~26!

Now usePf5UaP f̃ , the definition ofL(s) from Eq. ~19!,
the relationPU21(s)5Ua

21P and the fact thatUUa
215Ub

so that this equation can be rewritten as an equation forPf

dP f

ds
5LaPf1PLc~s!UbPf1E

0

s

PLc~s!U~s!U~s,s8!

3QU21~s8!Lc~s8!Ub~s8!Pf~s8!ds8. ~27!

Thus we have now arrived at an exact equation for the e
lution of the projection of the distribution onto the releva
variables. This equation may be, indeed will be, useful
cause we can make approximations to the memory term
arrive at a simplified model of the interaction between t
variablesa andb.

We can now use Eq.~27! to derive an exact equation fo
the evolution of the reduced distribution functionF. In order
to organize the resulting equation we define

g~s!5Ub~s!g, ~28!

which is the evolution of theb dependant part of the initia
distribution when it is uncoupled to thea variables. We also
introduce Q(s)5U(s)QU21(s) as the time-dependen
complementary projection, which has the explicit repres
tation

Q~s!5I2g~s!E db. ~29!

Also letZ(s,s8)5U(s)U(s,s8)U21(s8) be the operator tha
satisfies

d

ds
Z~s,s8!5@La1Lb~s!1Q~s!Lc~s!#Z~s,s8!, ~30!

with Z(s8,s8)5I . Usingg(s) andQ(s) in Eq. ~27! and not-
ing thatPf(s)5g(0)F(s) then yields

dF

ds
5LaF1L̄c~s!F1E

0

s

M ~s,s8!F~s8!ds8, ~31!

where the operatorsL̄c andM are defined by
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L̄c~s!F~s!5E Lc~s!„g~s!F~s!…db ~32!

and

M ~s,s8!F~s8!5E Lc~s!Z~s,s8!

3Q~s8!Lc~s8!„g~s8!F~s8!…db. ~33!

Note thatL̄c(s) is the average ofLc(s) against the distribu-
tion g(s). Equation~31! is an exact equation for the evolu
tion of the reduced distribution function; it is the main res
of the elimination method based on the projection opera
formalism in the interaction representation. It reduces to
form given by Grigolini and Marchesoni whenLb(s) and
Lc(s) are independent of time, andg is chosen as the equ
librium distributiongeq.

B. Application to the Fokker-Planck equation

The general elimination procedure described in the p
ceding subsection can now be applied to the reduced Fok
Planck equation, Eq.~10!, in order to develop a diffusion
equation for the position dependent number densityF(x,s).
To do so, we identifyb of the preceding section with th
directional variableV̂, andawith the position variablex. By
comparing Eqs.~14! and ~10!, we see that in our problem

La50, ~34!

Lb~s!52
S̄„E~s!…

2
L2 ~35!

and identify the coupling operator as

Lc52V̂•“. ~36!

We consider separable initial data f (x,V̂,0)
5g(V̂,0)F(x,0) with 15*4pg(V̂,0)dV̂, and compute the
evolution ofg(V̂,0) from

]g

]s
52

S̄„E~s!…

2
L2g.

This yields

g~V̂,s!5expF2
u~s!

2
L2Gg~V̂,0!, ~37!

where

u~s!5E
0

s

S̄„E~s8!…ds8 ~38!

is the distance in penetration lengthsl (E)51/S̄(E) that the
particle has traveled. Note thatg(V̂,s) can be expanded in to
spherical harmonics, if desired; this is not needed in the
lowing derivations. From the expression forg(V̂,s) we eas-
ily compute the second term on the right-hand side of
~31! as
t
r
e

-
er-

l-

.

L̄c~s!5V̄~s!•“ ~39!

where

V̄~s!5E V̂g~V̂,s!dV̂5e2u~s!V̄~0! ~40!

is the mean of the direction after the particle has travele
path lengths. Note that this mean of the direction is zero
the initial distribution,g(V̂,0), is isotropic, and in all case
decays to zero as the particles travel farther and far
through the medium, reflecting the increasing isotropy of
particle distribution in the absence of coupling to the spa
variable. To obtain Eq.~40! we have exploited that fact th
L2 is self-adjoint, andL2V̂52V̂; this latter fact follows
from the fact that the spherical components ofV̂ are propor-
tional toY1m .

The final task is to compute the memory term, the th
term of Eq.~31!. However, in order to do so, we must com
pute the operatorZ(s,s8) satisfying Eq.~30!, which is still a
difficult problem. We write this operator asZ(s,s8)
5Z0(s,s8)1Zc(s,s8), whereZ0(s,s8) satisfies

d

ds
Z0~s,s8!52

S̄„E~s!…

2
L2Z0~s,s8!, ~41!

with Z0(s8,s8)5I , and

d

ds
Zc~s,s8!52

S̄„E~s!…

2
L2Zc~s,s8!2Q~s!V̂•“Zc~s,s8!

2Q~s!V̂•“Z0~s,s8!, ~42!

with Zc(s8,s8)50. We can then at least solve for

Z0~s,s8!5e21/2@u~s!2u~s8!#L2, ~43!

even though findingZc(s,s8) remains difficult. However, it
is clear from the zero initial condition onZc(s,s8) and Eq.
~42! thatZc(s,s8) will be first order in the coupling operator
Lc52V̂•“.

We now use the decompositionZ(s,s8)5Z0(s,s8)
1Zc(s,s8) to induce a similar decomposition ofM (s,s8)
5M2(s,s8)1Mc(s,s8). HereM2(s,s8) is defined by

M2~s,s8!F~s8!5E
4p

V̂j

]

]xj
Z0~s,s8!

3Q~s8!V̂ i

]

]xi
g~V̂,s8!F~x,s8!dV̂,

~44!

where the superscript denotes the order of the operato
powers of the coupling operator, andMc(s,s8) is defined by
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Mc~s,s8!F~s8!5E
4p

V̂ j

]

]xj
Zc~s,s8!

3Q~s8!V̂ i

]

]xi
g~V̂,s8!F~x,s8!dV̂,

~45!

where V̂ i denotes thei th component ofV̂, and where the
summation convention is in effect. BecauseZ0(s,s8) does
not act on the spatial variablex and becauseg(V̂,s8) is
independent ofx, we can rewriteM2(s,s8)F(s8) as

M2~s,s8!F~s8!5F E
4p

V̂ jZ
0~s,s8!

3Q~s8!V̂ ig~V̂,s8!dV̂G ]2

]xi]xj
F~x,s8!.

~46!

This quantity, once integrated overs in Eq. ~31!, will, there-
fore, generate a diffusion term under the history integral.

Now let

Dj i ~s,s8!5E
4p

V̂ jZ
0~s,s8!Q~s8!V̂ ig~V̂,s8!dV̂. ~47!

We shall evaluate these quantities in stages, starting wit

Q~s8!V̂ ig~V̂,s8!5~V̂ i2V̄i~s8!…g~V̂,s8!. ~48!

where we have used Eq.~29! for Q(s8). We now apply
Z0(s,s8) to this and use Eq.~37! to thereby compute

Z0~s,s8!Q~s8!V̂ ig~V̂,s8!5@Z0~s,s8!V̂ ig~V̂,s8!

2V̄i~s8!g~V̂,s!#, ~49!

where we have usedZ0(s,s8)g(V̂,s8)5g(V̂,s) @from Eqs.
~37! and ~43!#. Thus

Dj i ~s,s8!5E
4p

@V̂ jZ
0~s,s8!V̂ ig~V̂,s8!

2V̄i~s8!V̂ jg~V̂,s!#dV̂. ~50!

The integral over particle directions consists of two term
the second of which is immediately seen to be the produc
the mean particle directions at the path lengthss ands8

E
4p

V̄i~s8!V̂ jg~V̂,s!dV̂5V̄i~s8!V̄j~s!

5V̄i~0!V̄j~0!e2u~s!2u~s8!.

~51!

On the other hand, the first term is
,
of

E V̂ jZ
0~s,s8!V̂ ig~V̂,s8!

5E
4p

V̂ je
21/2@u~s!2u~s8!#L2V̂ ig~V̂,s8!

5E
4p

V̂ ig~V̂,s8!e21/2@u~s!2u~s8!#L2V̂ j

5E
4p

V̂ ig~V̂,s8!e2@u~s!2u~s8!#V̂ j

5e2@u~s!2u~s8!#E
4p

V̂ iV̂ jg~V̂,s8!, ~52!

where the facts thatL2 is self-adjoint andL2V̂52V̂ have
once again been used. We write this as

E
4p

V̂ jZ
0~s,s8!V̂ ig~V̂,s8!dV̂5e2@u~s!2u~s8!#F i j ~s8!,

~53!

where

F i j ~s8!5E
4p

V̂ jV̂ ig~V̂,s8!dV̂, ~54!

and we see that it describes the decay of the correlation
tween the particle directions at times8 and the later time
s. In terms of these quantities we now have

Dj i ~s,s8!5e2@u~s!2u~s8!#F i j ~s8!2V̄i~0!V̄j~0!e2u~s!2u~s8!.
~55!

In order to evaluate the matrixF in general we first ex-
press the Cartesian components ofV̂ in polar coordinates,
with m the cosine of the polar angle andf the azimuthal
angle. Differentiating thezz component of Eq.~54! yields

dFzz

ds
52

1

2
S̄„E~s!…E

4p
g~V̂,s!L2m2dV̂, ~56!

and evaluating the action ofL2 on m2 then yields

dFzz

ds
5S̄„E~s!…E

4p
g~V̂,s!~123m2!dV̂

5S̄„E~s!…~123Fzz!. ~57!

Solving this gives us

Fzz~s!5 1
31e23u~s!@Fzz~0!2 1

3 #, ~58!

which clearly decays to the isotropic value 1/3 ass→`.
A similar calculation will show that

E
4p
g~V̂,s!~12m2!cos~2f!dV̂

5e23u~s!E
4p
g~V̂,0!~12m2!cos~2f!dV̂, ~59!
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which is a useful result because differentiating theyy com-
ponent of Eq.~54! yields

dFyy

ds
5

S̄„E~s!…

2 E
4p
g~V̂,s!~2113m2!dV̂

1
3S̄„E~s!…

2 E
4p
g~V̂,s!~12m2!cos~2f!dV̂.

~60!

It is easy to confirm that*g(V̂,s)dV̂51 ~because it was so
at s50!, and so

dFyy

ds
5

S̄„E~s!…

2
~2113Fzz!1

3S̄„E~s!…

2
c~0!e23u~s!,

~61!

where

c~0!5E
4p
g~V̂,0!~12m2!cos~2f!dV̂ ~62!

is a measure of the azimuthal asymmetry of the initial an
lar distribution. Thus,

Fyy~s!5Fyy~0!1 1
6 ~12e23u~s!!@3Fzz~0!2113c~0!#,

~63!

which does not necessarily approach 1/3 ass→`, although
if the initial distributiong(V̂,0) is isotropic thenFyy51/3
for all s, as it should be.

Similarly we can find that

dFxx

ds
5

S̄„E~s!…

2
~2113Fzz!2

3S̄„E~s!…

2
c~0!e23u~s!

~64!

and discover

Fxx~s!5Fxx~0!1 1
6 ~12e23u~s!!@3Fzz~0!2123c~0!#;

~65!

this element also can decay to a value different from1
3. More

calculations like those above will yield the cross terms

Fxy~s!5e23u~s!fxy~0!, ~66!

Fxz~s!5e23u~s!fxz~0!, ~67!

Fyz~s!5e23u~s!fyz~0!, ~68!

all of which decay to zero ass→`.
Since the medium is isotropic the only preferred dire

tions are those suggested by the initial distribution; when
is azimuthally symmetric aboutV̄~0! the matrixF(s) is di-
agonal in the coordinate frame in whichV̄(0) defines thez
direction

F~s!5FF'~s!

0
0

0
F'~s!

0

0
0

F i~s!
G , ~69!
-

-
is

where

F'~s!5E
4p

V̂xV̂xg~V̂,s!dV̂5Fxx~0!1 1
6 ~12e23u~s!!

3@3Fzz~0!21# ~70!

and

F i~s!5E
4p

V̂zV̂zg~V̂,s!dV̂5 1
31e23u~s!@F i~0!2 1

3 #.

~71!

On the other hand, when the initial distribution is isotrop
g(V̂,s)51/4p for all s and there is no preferred direction; i
this case theF matrix is diagonal with elements13on the
diagonal in any coordinate frame. Thus for azimuthally sy
metric initial data we can always work in a frame whereF is
diagonal, and we shall do so when convenient.

The final result then is an exact delay-diffusion equat
for the evolution of the direction independent dens
F(x,s)

]F

]s
52V̄~s!•“F1E

0

s

Di j ~s,s8!
]2

]xi]xj
F~x,s8!ds8

1E
0

s

Mc~s,s8!F~s8,x!ds8, ~72!

where only the operatorMc(s,s8) is unknown. While this
equation is exact, it is not in closed form because we can
evaluate the operatorZc that appears inMc. However, be-
causeZc is first order inLc , this equation is in a form suit-
able for expansion in powers of the coupling operator. W
shall take up this approximation in Sec. V.

V. APPROXIMATE CLOSED-FORM ELIMINATION
OF THE ANGULAR VARIABLE

In order to develop a tractable, closed-form diffusionli
equation for the description of the penetration of partic
through the medium we note that Eq.~72! implies that
]F/]s is first order in the coupling operator. Thus we c
write

F~x,s8!5F~x,s!1O~Lc!~s2s8!. ~73!

But the first history term of Eq.~72! is already of second
order inLc , while the third term, which containsZc, is of
third order. Therefore, we can write

]F

]s
52V̄~s!•“F1E

0

s

Di j ~s,s8!ds8
]2

]xi]xj
F~x,s!

~74!

correct through terms of second order in the coupling ope
tor. Writing this in a coordinate frame withV̄~0! along the
z axis, and assuming azimuthally symmetric initial data
simplicity, we have
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]F

]s
52m~s!

]F

]z
1D i~s!

]2F

]z2
1D'~s!F]2F]x2

1
]2F

]y2 G ,
~75!

where

m~s!5iV̄~0!ie2u~s! ~76!

is a time-dependent mobility, and

D i~s!5
e2u~s!

3 E
0

s

@eu~s8!1e22u~s8!@3F i~0!21#

23iV̄~0!i2e2u~s8!#ds8 ~77!

and

D'~s!5
e2u~s!

3 E
0

s

@3F'~0!eu~s8!1 1
2 @eu~s8!2e22u~s8!#

3@3F i~0!21##ds8. ~78!

Equation~75! was first presented by Akcasu and Lars
as a phenomenological diffusion equation that exactly rep
duces the first two spatial moments^x(s)& and ^x(s)x(s)T&
in an infinite homogeneous medium, although they assum
that g(V̂,0)5d(V̂2V̂0), so that F i(0)51, iV̄(0)i51,
F'(0)50. The systematic derivation of Eq.~75! as the first
two terms in an expansion in powers of the coupling opera
is considered to be the main contribution of this paper. T
formalism of course allows us to calculate the next term
this expansion, although we do not attempt to do so her

VI. SPECIAL CASES AND LIMITING BEHAVIORS

In order to illustrate the physical implications of th
above results quantitatively, we assume that the trans
cross section for electrons is independent of the incident
ergy, but still allows energy transfer to the scatterer. In t
special caseu(s)5S̄s. This simple model, however, is mor
realistic in the case of photon transport because photon s
tering ~under the circumstances typical of diffusive wave e
periments! is quasielastic, and the energy loss on scatter
expressed as a change in the frequency of the incident
ton, is neglected@9,10#. This means that the energy loss p
unit lengthS(E) is zero in the above general formulatio
and that photons maintain their initial energyE0 . Although
the photon scattering cross section is strongly energy de
dent, it is always evaluated at the initial energyE0 , so that
S̄„E(s8)…5S̄(E0), andu(s)5S̄(E0)s, as in the case of elec
trons. In this special case, and also assuming an initiad
distribution in direction along thez axis, the diffusion coef-
ficients reduce to

D i~s!5
1

3S̄
F123e2Ss13e22Ss2e23Ss5

~eSs21!3

3e3SsS̄
,

~79!

D'~s!5
1

3S̄
F12

3

2
e2Ss1

1

2
e23SsG . ~80!
-

ed

r
e
n

rt
n-
s

at-
-
g,
o-
r

n-

We shall make use of these expressions in our exam
later.

The asymptotic behavior of the diffusion coefficients f
small and larges are also of interest, as they help us und
stand how the transport process represented by Eq.~75!
transforms from the Fermi-Eyges behavior to isotropic dif
sion. Again for the case of ad function distribution of initial
directions, we expand the expressions in Eqs.~77! and ~78!
for small s to find

D i;
1
3 S̄~E0!

2s3, ~81!

D'; 1
3 S̄~E0!s

2. ~82!

We observe thatD i(s) vanishes faster thanD'(s), and,
hence, can be ignored in Eq.~75! in the small-s limit. Since
m(s);1 in this limit, the initial evolution~Fermi-Eyges! of
the beam is described by

]F

]s
52

]F

]z
1D'~s!F]2F]x2

1
]2F

]y2 G . ~83!

This equation represents streaming along thez direction,
which is parallel to the beam axis, accompanied by a spr
of the beam on a plane perpendicular to thez axis, as de-
scribed by the second term. This transverse motion, howe
is not a diffusion process becauseD'(s) is not independent
of s, and the mean-square displacement on a transverse p
is not proportional tos, but rather behaves as

^x'
2 &; 2

3 S̄~E0!s
3. ~84!

We compare this result to the short time limit of the mea
square displacement in thez direction, which follows from
Eq. ~81! as:

^xi
2&; 1

6 S̄~E0!
2s4. ~85!

Thus we find that the transverse spread of the beam is la
than the longitudinal spread in the early stages of beam p
etration, that is, whereS̄„E(0)…s!1.

The large-s limits of D i(s) andD'(s) are obtained by
assuming thatu(s) diverges ass→`, and then applying
L’Hôpital’s rule to the indeterminate ratio obtained after r
placing the first factore2u(s) by 1/eu(s) in Eqs.~77! and~78!,
again in the caseg(b,0)5d(V̂2V̂0). One finds that both
diffusion coefficients approach the same limit

D i~s!;D'~s!;
1

3S̄~s!
[D~s! as s→` ~86!

On the other hand, the mobilitym(s) vanishes exponentially
in this limit, and so Eq.~75! reduces to

]F

]s
5D~s!¹2F ~87!

which describes isotropic diffusion. Thus we see that E
~75! will describe the transition from the Fermi-Eyges theo
used in electron transport-dose calculations to the isotro
diffusion behavior assumed in photon diffusive wave sp
troscopy.
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When the initial distribution is isotropic,F i(0)51/3,
V̄(0)50, F'(0)50 andc(0)50. Equations~77! and ~78!
then tell us that the diffusion coefficients are equal, althou
still s dependent

D i~s!5D'~s![D0~s!5
1

3
e2u~s!E

0

s

eu~s8!ds8 ~88!

and Eq.~75! reduces to the isotropic diffusion equation wi
a time-dependent diffusion coefficientD0(s). When u(s)
5sS̄ this latter becomes

D0~s!5
1

3S̄
~12e2sS̄!. ~89!

It is interesting to note that the modified diffusion equati
~75! differs from the conventional diffusion theory, even
this case of an isotropic source, for distances less than
penetration depthl *51/S̄.

VII. SOLUTION IN AN INFINITE MEDIUM

A. Pulsed source

The general solution of Eq.~75! for an arbitrary initial
directional distribution of particles located initially a
x0(0,0,z0), and withV̄(0) once again defining thez axis, is
easily constructed in an infinite medium as

F`~x,s!5
1

~2p!3/2s'
2 ~s!s i~s!

3expH 2
@z2^z~s!&#2

2s i
2~s!

2
x21y2

2s'
2 ~s!J , ~90!

where^z(s)& denotes the mean position

^z~s!&5z01E
0

s

m~s8!ds8 ~91!

and wheres i
2 ands'

2 denote parallel and transverse spat
variances, respectively, i.e.,s i

2(s)5Šz22^z(s)&2‹ and
s'
2 (s)5^x2&5^y2&, and are given by

s i
2~s!52E

0

s

D i~s8!ds8, ~92!

s'
2 ~s!52E

0

s

D'~s8!ds8. ~93!

As expected from the isotropy of the medium, the me
position^z(s)& of the particles moves in the initial directio
with a exponentially decreasing velocitye2u(s). When the
cross section is independent of energy in electron transp
and when the scattering is elastic in the case of photon tr
port, u(s)5sS̄, and Eq.~91! becomes

^z~s!&5z01
12e2sS

S̄
, ~94!
h

he

l

n

rt,
s-

which shows that the mean position of the particle stops
z011/S̄ in the limit of s→`. Hence,l *51/S̄ can be inter-
preted as the penetration distance of the beam. T
asymptotic isotropic diffusion, described by Eq.~87!, takes
place about this mean position. In contrast, at finite times t
particle displays an anisotropic diffusion motion aroun
^x(s)&5^z(s)&, with different, time-dependent, longitudinal
and transverse diffusion coefficients.

Thus, the physical content of the infinite medium solutio
in Eq. ~90! can be summarized as follows: We start with
large burst of particles all located at a single point, and mo
ing in thez direction. As time elapses, these particles beg
diffusing anisotropically, forming a cloud which looks like
an oblate rotational ellipsoid about thez axis. The center of
the cloud moves along thez axis while its size grows aniso-
tropically as it moves. The center of the cloud eventua
stops at the penetration point, a distancel *51/S̄ ~for S̄ con-
stant as described above! from the injection point. The shape
of the cloud gradually becomes spherical as time passes
the asymptotic regime, the particles execute an isotropic d
fusion motion about the penetration point, and the size of t
cloud continues growing, becoming increasingly spheric
with a mean-square radius that grows like^R(s)2&52l * s.

In Fig. 1 we plot, as a function of path length traveled, th
ellipse that contains half of the particles which were initiall
injected by a monodirectional, monoenergetic, point sour
at (z,r )5(0,0), wherer 25x21y2. All of the particles ini-
tially travel in the positivez direction. Each ellipse contains
50% of the total number of particles at different total pa
lengthss, with s running from 0 to 2 in steps of 0.25, where
the units of distance are 1/S̄, which is taken to be indepen-
dent of energy. The dots, at the center of each ellipse, sh

FIG. 1. The evolution of a cloud of particles injected into a
infinite medium with constant penetration cross sectionS̄. Each
ellipse contains 50% of the total number of particles at differe
total path lengthss, with s running from 0 to 2 in steps of 0.25. The
solid dots show the mean particle position, which approaches
point marked with a circle ass→`. The outer ellipse corresponds
to s52.0; the path length for the other ellipses are easily identi
able by counting in from the outer one in steps of 0.25.
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the mean particle position as it penetrates into the medi
At long times this mean particle position comes to a stop
(z,r )5(1,0), which is marked with a small circle. Ats
52.0, the last path length shown, the mean position
reachedz50.865.

The expression ofF` given in Eq.~90! is, with a proper
normalization@9,10# the path-length distribution of particle
arriving at a pointx in an infinite medium. This path-lengt
distribution plays a central role in diffusive wave spectro
copy @9,10#.

B. Steady state solutions

In this section we calculate the energy-dependent sc
particle densityn`(x,E) due to a constant point source
electronsd(x2x0)d(E2E0)d(V̂2V̂0) in an infinite me-
dium. The particle density, or more usefully the particle flu
is important because it enters in the dose calculations
nuclear medicine applications. We start withn(x,E,t),
which is obtained by integrating Eq.~7! over V̂

n~x,E,t !5p~E!d„E2E~ t !…F~x,t !, ~95!

whereE(t)5E„s(t)… and satisfiesdE(t)/dt52v(E)S(E).
The only unknown in Eq.~95! is F(x,t); hence, ifF(x,t) is
determined for a pulsed point source in the medium w
appropriate boundary conditions, thenn(x,E,t) can be inter-
preted as the time-Green’s function, and the steady state
lution can be constructed as

n~x,E!5E
0

`

n~x,E,t !dt5p~E!E
0

`

F~x,t !d„E2E~ t !…dt.

~96!

Changing the integration variable in this equation fromt to
E usingdE(t)/dt52v(E)S(E) yields

n~x,E!5p~E!E
0

E0 F„x,t~E8!…d~E2E8!

v~E8!S~E8!
dE8. ~97!

In obtaining this result we have usedE(0)5E0 , and
E(t)→0 as t→`. Evaluating the integral in Eq.~97! and
introducing the scalar fluxw(x,E)5v(E)n(x,E), we find, in
general

S~E!w~x,E!5p~E!F„x,t~E!…5p~E!F„x,s~E!…. ~98!

Thus, we can obtain all the properties of the steady state
explicitly from the knowledge ofF(x,s), for which we have
already derived exact and approximate equations; we sim
replaces in the latter bys(E), the path length traveled b
the particle in slowing down from the energyE0 to the en-
ergyE. An approximation toF(x,s) has already been con
structed~in the preceding section! for an infinite medium, so
we can now obtain explicitly all the properties of the flux

However, it is sometimes more convenient to start wit
diffusion equation for the flux, especially in applications i
volving finite geometries. We obtain such an equation
differentiating both sides of Eq.~98! with respect toE, yield-
ing
.
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]

]E
Sw5Saw1p

]F

]s U
s5s~E!

ds

dE
. ~99!

Using ds/dE521/S and Eq.~72! we can then derive an
exact equation for the steady state flux. More usefully for
case of a monoenergetic, monodirectional point source,
can use the approximate diffusion equation Eq.~75! to elimi-
nate]F/]s and arrive at the slowing down equation

]

]E
Sw2Saw5m~E!

]w

]z
2Di

]2w

]z2
2D'F ]w

]x2
1

]w

]y2G .
~100!

The coefficients in this equation denotem(E)5m„s(E)…,
Di(E)5D i„s(E)…, andD'(E)5D'„s(E)…. They can easily
be obtained from Eqs.~76!, ~77!, and~78!. These expression
all contain the functionu(s), defined by Eq.~38!. By chang-
ing the variable froms8 to E8 we obtainQ(E)5u„s(E)… as

Q~E!5E
E

E0 S̄~E8!

S~E8!
dE8. ~101!

The same procedure is used to obtain

m~E!5e2Q~E!, ~102!

Di~E!5
1

3
e2Q~E!E

E

E0 1

S~E8!
@eQ~E8!23e2Q~E8!

12e22Q~E8!#dE8, ~103!

D'~E!5
1

3
e2Q~E!E

E

E0 1

S~E8!
@eQ~E8!2e22Q~E8!#dE8

~104!

and we thereby have explicit expressions for the mobi
and diffusion coefficients in the slowing down equatio
~100!.

For small energy losses, for whichE02E is treated as a
small parameter,Q(E) can be approximated asQ(E)
'(E02E)S̄(E)/S(E). Hence, in the lowest order inE0
2E,

m~E!'12~E2E0!
S̄~E!

S~E!
, ~105!

Di~E!'E
E

E0 1

S~E8!
F ~E02E8!

S̄~E8!

S~E8!
G2dE8, ~106!

and

D'~E!'E
E

E0
~E02E8!

S̄~E8!

S2~E8!
dE8. ~107!

SinceDi(E) is of third order inE2E0 , the slowing down
equation~100!, reduces for small energy losses to

]

]E
Sw2Saw5m~E!

]w

]z
2D'F ]w

]x2
1

]w

]y2G . ~108!

When m(E) is replaced by unity, and absorption is n
glected, this equation reduces to the Fermi-Eyges re
@1,2#.



s

r
th
n

in
m

-

e

h
cl

tio

r-
an
ly
n
r
g’
ta
e

ns

an

he
m

sec-

is
.
se
re
tial
of
il-
ay
iso-
is
al
om
em
e-

ar-
r
the
nd
d as
the
is

is
n,
py

ted
tion
-
ed
nly
r
n
gth
on.
tri-
.

r
der

55 6763FOKKER-PLANCK DESCRIPTION OF ELECTRON AND . . .
But, whereas, this latter result is valid only in the lowe
order inE2E0 , the slowing down equation~100! is valid at
all energies; thus it does indeed extend the Fermi-Eyges
sult to the full energy range. It is worth remembering that
only approximation required to derive the slowing dow
equation~100! from the Fokker-Planck equation~1!, was the
expansion of the memory kernel in powers of the coupl
operator. It’s validity or accuracy can, therefore, be exa
ined by looking at the magnitude of the coupling term.

The full solution of the slowing down equation in an in
finite medium without absorption is just

S~E!w`~E!5
1

~2p!3/2s'
2 ~E!s i~E!

3e2@„z2z~E!…2/2s'
2

~E!#@x21y2/2s'
2

~E!#,

~109!

where

s i
2~E!52E

E

E0 1

S~E8!
Di~E8!dE, ~110!

s'
2 ~E!52E

E

E0 1

S~E8!
D'~E8!dE, ~111!

and

z̄~E!5E
E

E0
Q~E8!dE8. ~112!

is the mean position of the particles after they have slow
down to energyE.

The calculation of dose rates in a medium due to bot
pulsed point source and a constant point source of parti
in terms of corresponding densityF`(x,s) is straightforward
@4#, and will not be discussed here.

VIII. CONCLUSIONS

The purpose of this paper was to develop a new deriva
of the approximate diffusionlike equation~75! for the par-
ticle densityF(x,s). This derivation begins from the Fokke
Planck description of particle transport, which is itself
approximation that is valid when the scattering is forward
peaked and the energy change in scattering is small. The
derivation was based on the elimination of the direction va
able V̂ through an elimination scheme based on Zwanzi
projection operator formalism in the interaction represen
tion. The elimination procedure closely follows the one d
scribed by Grigolini and Marchesoni@8#, but with a different
projection operator which is more appropriate to the tra
port problem at hand.
ys
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The approximate diffusion equation is obtained from
exact equation for the density Eq.~72!, which is valid for
arbitrary separable initial distributions, by expanding t
usual memory function in the projection operator formalis
in powers of the coupling operatorLc between the direction
and spatial variables, and then retaining terms through
ond order inLc . The result of this is Eq.~74!. When the
initial angular distribution is azimuthally symmetric th
equation reduces to Eq.~75!, which was first derived in Ref
@3# by a different method. The longitudinal and transver
diffusion coefficients, and the mobility in this equation a
time dependent, and contain information regarding the ini
angular distribution of particles during the early stages
particle penetration where they still maintain their penc
beam distribution. This information gradually decays aw
so that at later stages the particles execute increasingly
tropic diffusion about their mean position. This situation
different from the conventional treatment of monodirection
beams in terms of an uncollided flux that is separated fr
an isotropic collision source. Since in the present probl
the scattering is forwardly peaked, the initial direction is r
membered even after many collisions.

We solved the new diffusion equation exactly for the p
ticle densityF`(x,s) in a homogeneous infinite medium fo
a monoenergetic and monodirectional burst of particles at
origin. This solution was used to study the penetration a
the transverse and longitudinal spread of the particle clou
they are transported into the medium. The evolution of
shape of the particle cloud from pencil-like to spherical
quantitatively displayed in the figure.

The modified diffusion equation obtained in this paper
applicable to the calculation of the path-length distributio
which plays a central role in diffusive wave spectrosco
@9,10#. With proper normalizationF`(x,s) is the path-length
distribution of particles arriving at pointx via different paths
through an infinite medium@9,10#. It has been calculated
until now by assuming that particles that are actually inser
at the origin instead appear instantaneously at the penetra
point locatedl * away, and by then solving the ordinary iso
tropic diffusion equation for an isotropic point source locat
at this displaced point. Therefore, those results are valid o
at linear distancesuxu from the origin that are much large
thanl * . Since the solution of the modified diffusion equatio
obtained in this paper is valid at all distances, the path-len
distribution can be calculated without the above restricti
In future work we intend to compare the path-length dis
butions obtained by these two approaches quantitatively
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