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Fokker-Planck description of electron and photon transport in homogeneous media
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Starting from a Fokker-Planck description of particle transport, which is valid when the scattering is for-
wardly peaked and the energy change in scattering is small, we systematically obtain an approximate diffu-
sionlike equation for the particle density by eliminating the direction vari&bl&ith an elimination scheme
based on Zwanzig’'s projection operator formalism in the interaction representation. The elimination procedure
closely follows one described by Grigolini and MarchespniMemory Function Approaches to Stochastic
Problems in Condensed Matteedited by Myron W. Evans, Paolo Grigolini, and Guiseppe P. Parravicini,
Advances in Physical Chemistry, Vol. @iley-Interscience, New York, 1985Chap. Il, p. 29, but with a
different projection operator. The resulting diffusion equation is correct up to the second order in the coupling
operator between the particle direction and position variable. The diffusion coefficients and mobility in the
resulting diffusion equation depend on the initial distribution of the particles in direction and on the path length
traveled by the particles. The full solution is obtained for a monoenergetic and monodirectional pulsed point
source of particles in an infinite homogeneous medium. This solution is used to study the penetration and the
transverse and longitudinal spread of the particles as they are transported through the medium. Application to
diffusive wave spectroscopy in calculating the path-length distribution of photons, as well as application to
dose calculations in tissue due to an electron beam are menti@Ei63-651X97)11706-3

PACS numbgs): 02.50-r, 05.20.Dd, 52.65.Ff, 87.53.Fs

[. INTRODUCTION energy during this random Brownian motion. The Fermi-
Eyges theory is, however, not applicable to the description of
Electron transport in tissue has received increasing atterelectron motion in its final diffusive stage, and it is increas-
tion in recent years because of its importance for determiningngly less applicable during the transition from pencil-
the dose delivered during the treatment of localized maligheamlike to diffusive behavior. Clearly, a more comprehen-
nancies with well-collimated electron beams. A quantitativesive and tractable theory is needed for the more accurate
knowledge of the spread of the beam before reaching itsalculation of electron dose rates in tissue.
target tumor, as well as the expected dose delivered by the Some progress has recently been made in this direction by
electrons to both the healthy and malignant tissues, is obviAkcasu and Larsef] and by Larseret al.[4] by assuming
ously essential in the planning of an appropriate treatmenthat the electron flux satisfies a diffusion equation in configu-
procedure. ration space with time-dependent transverse and longitudinal
Such dose calculations have been based, until now, on thgiffusion coefficients, and a time-dependent mobility. The
Fermi-Eyges[1,2] theory of pencil-like electron beams. diffusion coefficients and the mobility are explicitly obtained
However, this theory is valid only during the electrons’ ini- [3] by requiring that the proposed diffusion equation exactly
tial penetration into the tissue, before the beam has undereproduce the true first and second spatial moments of the
gone appreciable spread transverse to its primary direction @flectron distribution function. These moments are calculated
travel. In the Fermi-Eyges theory it is assumed that electronstarting from the Fokker-Planck description of electron trans-
in the beam lose their energy continuously, suffering a larggort in an infinite homogeneous isotropic medium in Ref.
number of small-angle collisions without changing their ini- [3], and directly from the Boltzmann equation in Rgf] by
tial direction significantly, and the beam, therefore, initially using the so called “transport space-angle moment” method.
maintains its overall forward direction of travel. But at the Numerical comparison with Monte Carlo calculatigdg for
later stages of the beam’s transport the direction of travel oélectron beams show that the new diffusion equation yields
the electrons becomes randomized, so that their mean veloaecurate closed-form expressions for depth-doses and radial-
ity approaches zero while their mean position approaches dose profiles.
fixed point. This point defines the penetration distance of the In this paper we first present a systematic derivation of an
collimated beam from its injection location. During this final exact diffusion equation for the scalar electron flux in an
stage of transport, the electrons diffuse isotropically abouhomogeneous medium, including the effect of particle ab-
their fixed mean position, and continue losing their kineticsorption. We start from the Fokker-Planck equation for the
energy-dependent angular electron flux, and exactly elimi-
nate the effects of absorption and the energy variable for the
*Permanent address: Dept. of Nuclear Engineering and Radiologcase of monoenergetic initial data. We next eliminate the
cal Sciences, University of Michigan, Ann Arbor, Ml 48109-2104. direction variable using the Zwanz|®,6] projection opera-
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tor formalism in the interaction representation, resulting in an R 9 v
an exact diffusionlike equation with memory terms. We then i -0vQ-Vn—v3 n+ E [Svn]— > L%n, (1)
show that the diffusion equation form which was assumed in

Refs. [3.] and[4] actually fOHOWS f_rom this exact form by where n(x,E,f),t) is the position, energy, direction, and
expaang_the memory function in the projection operatorime_dependent particle densit$(E) is the energy loss per
formalism in powers of the coupling between the angle and, ., distance, or stopping poweX;,(E) is the macroscopic
position variables. The elimination procedure used in the

L absorption cross sectio=3,—3,, where3,(E) is the
pre:ie nt qlenyahon IS one (.)f the ,,”.‘Eth"d_s often referred to 3Fansport cross section; the vec@ris the unit vector in the
the “elimination of fast variables” in the literatullg,8]. The

. S ) . _ direction of particle velocityp (E) is the particle speed cor-
particular elimination method employed in this paper is aesponding to the particle enerds; and L2 is the angular

extension of the elimination method developed in Grigolini ,omentum operator defined by
and Marchesoni8].

Photon transport, on the other hand, has become an active
field of both theoretica]9] and experimentdl10] research L?=—
over the past decade, especially in connection with diffusive

wave spectroscopy. The diffusive character of the light enwhere is the cosine of the polar angle describing the unit
ters in the analysis of the time correlation function of theyector Q, and ¢ is the azimuthal angle. The sign &f is
scattered light, and is crucial in the understanding of th&hosen such that its eigenfunctiovig,(€), i.e., the spheri-
optical experiments designed to study dynamic properties of, harmonics, satisfi2Y,,=I(I+1)Y,,. The definitions

particles suspended in fluids, such as their diffusion coeffiq stopping power,S(E), and penetration cross section
cient. The central issue in the theory of diffusive wave spec<;, ' ’ '

troscopy is the calculation of the path-length distribution ofz(E)’ in terms of the differential cross sectian, are
multiply scattered photons for a given linear displacement o R o
from their injection point. The current theoretical modeling S(E)=f dE’j dQ'(E-E")2{(E—E',Q"-Q) (3
[9] of the photon flux in diffusive wave spectroscopy as- 0 4m
sumes that the beam of light has fully randomized in direc- .
tion about a fixed penetration depth, so that standard isotro- SE g _ /
pic diffusion theory is applicable; in contrast to the Fermi- E(E)_wao dE f_l(l #E(E-B ) @
Eyges theory which holds during the initial penetration of
radiation into the medium, this isotropic diffusion is true
only in the final stage of the photon transport process. The
modified diffusion equation derived in this paper is appli- The energy dependance and absorbtion effects can be
cable to both the initial forward directed photon beam and tazompletely eliminated from Eq1) in the case of a monoen-
the eventual isotropic photon diffusion, and thereby providesrgetic initial distribution at energl,. To do so, let us first
the missing connection between these two behaviors. define the nonabsorbtion probability

It should be mentioned at the outset that the Fokker-
Planck description of photon transport presented in this pa- Eo 2 ,(E)
per in terms of a particle transport equation is approximate, p(E)=exp{ e S(E") dE'} ®)
and applicable only to thdiffusivetransport of unpolarized
photons. It does not take into account the complexities aris;nq use it to rewrite E(L) as
ing from the strong polarization dependance of photon scat-
tering, which would require a transport equation that in- an R P
cludes photon polarization as another vector particle —=—0vQ-Vn+p — [—
property, like direction of motion. However, it describes the at JE
gradual transition from the coherent to incoherentdiffu-
sive) regime more accurately than the usual treatment o
wave transport as a superposition of the coherent and diffu-
sive componentf9] as demonstrated in this paper.

d o 0 1 &
— (1—p) —+

o o 1-p? ag?) @

IIl. ELIMINATION OF ABSORBTION AND ENERGY

|[\|0w write
n(x,E,Q,t)= 5[E— &) Ip(E)f(x,Q,5(1),  (7)

wheref will be a function to be determined, ads) is the

energy of a particle that has traveled a path lergytivhich
Il. FOKKER-PLANCK DESCRIPTION

is given by
OF PARTICLE TRANSPORT
We start with the Fokker-Planck descriptiphl,12 of d_“:: — (&) ®)
electron transport, which can be obtained from the conven- ds

tional linear Boltzmann equation by assuming that the scat-

tering is forwardly peaked, and that the energy change imlong with the initial conditior€(0)=E,. Also note that we
scattering is small13]. The derivation of the Fokker-Planck can write s(t) as the path length traveled in timeby a
equation is conventional and well documenféd—-14; we  particle starting at energ¥,, and thatds/dt=uv(&(s)).
shall not repeat it here. For the present application, we writéNow, substituting the form ofi from Eq.(7) into Eq.(6) and
the Fokker-Planck equation as noting that
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9 tion representation, and was explained in detail by Grigolini
E [S(E—&(s))v(E)S(E)f] and Marchesonf8], who also provided several illustrative
examples and physical applications. We shall modify this
=8 (E—&(s))v(&(s))S(E(s)T, (9)  method for application to the problem at hand.
We abstract the problem as follows: assume that the sys-
yields the required equation fdr tem evolution is described by an equation of the form
of - 3(&(s df
AR (e 10 o= Ll L9 +L(9)T, 14

Equation(10) is also of Fokker-Planck form but for the re- where the operatork, and L,(s) act on different sets of
duced functionf(x,€,s); it is easier to handle than the independent variablea andb, which we shall call the rel-
Fokker-Planck equation for the full direction-dependant denevant and irrelevant variables, respectively; because they act
sity n(x,E,Q,t). It can be interpreted as the one-speedon different independent variables the operatbrs and
Fokker-Planck equation for the angular particle density inkb(S) commute. We also allovi, to depend explicitly on

the absence of absorption, and its solution provides us withtime” s. The operatot (s) need not commute with either

the solution of Eq(1) for the case of monoenergetic initial La O Ly(s), and will be called the coupling operator. From
data Eq. (14) we wish to obtain an equation for the reduced dis-

R R tribution F(a,s) = [f(a,b,s)db.
n(x,E,Q,0)=6(E—E)f(x,€,0). (11 The allowed time dependance bf is a slight deviation
from Grigolini and Marchesoni’s derivation, and is needed in
Frequently we are not interested in the direction informationpur application to the Fokker-Planck equation. The time de-
but are instead satisfied by a knowledge of the directionpendance ofL. is also an extension of Grigolini and

independent density Marchesoni, but is not required for our application; we in-
clude it only because it requires no additional work to do so.

N(x,E,t)= j n(x,E,fl,t)dfl. Note_that in the expressions b_elow we s_h_all avoid n(_)ting the

4 functional dependance of various quantities on the indepen-

. . dent variables, especialyandb, except when it seems ex-
We will therefore seek an equation for the energy-picitly useful to do so.
independent and direction-independent particle density de- To introduce the interaction representationUe) be the
fined by solution of

Foes)= |, fxode, a2 U =Lt LyoIU(S), 15

since from this we can compute with the initial conditionU(0)=1 wherel is the identity
_ B operator. Becausé., and Ly(s) commute, the operator
NO,E, 1) = S[E=&(s(D)) Jp(B)F (X, s(D)). (13 U(s) can be factored abl(s)=U,(s)U,(s)=U,(s)U4(9s),
whereU, andU, describe the decoupled evolution of the
IV. EXACT ELIMINATION OF THE ANGULAR andb variables; specifically
VARIABLE

du
4= U,, (16)

The objective of this section is to obtain an exact equation

for the scalar densit§ (x,s) by eliminating the angular de- ds

pendence in the effective one-speed denfiiy{2,s) which . _

satisfies EQq.(10). We do so through an extension of the with U,(0)=1, and

Zwanzig projection operator meth¢8]. The extension that du,

we require for our application to E¢LO) is described in Sec. s = Ly(s)Uy, (17
IV A, and applied in Sec. IV B.

again with identity initial data. In the interaction representa-

tion we then writef (s) = U(s) f(s), and substituting this into
In the mathematical description of many physical systems=q. (14) discover thatf must satisfy the equation

there is often an interplay of mechanisms involving vastly

different relaxation times. By eliminating the irrelevant vari- d

ables, which are usually responsible for fast variations on a ds

scale of no interest, we can sometimes obtain a tractable

approximate description of the slow scale evolution of theyith

system. Numerous elimination methods have been developed

for a variety of applications, and many of these were re- L(s)=U(s) L (s)U(s), (19

viewed by van Kampefi7]. One of these methods involves

Zwanzig’s projection operator techniq{,6] in the interac- whereU(s) ! denotes the inverse af(s).

A. Elimination of irrelevant variables

f(s)=L(s)f(s), (18)
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Because our interest in the system will be satisfied by d'he value of this equation lies in our ability to convert it into
knowledge_of t_he reduced_ di§trib_uticﬁis), We_shall _intrO- an equation foP f, rather than folP f. This is possible when
duce a projection of. the dlstrlbuthlﬁf(.s) that is easily re-  PL,(s)=0, andP andL, commute, as we required above,
lated toF(s). In particular, the projection acts on any func- for in this caseP commutes withU, anddPU,/ds=0 by

tion of a andb according to Eq. (17). This latter implies thaP Uy(s)=PUy(0)=P, and
thereforePUUp,=U,P. HencePf=PUf=U,Pf, and we
Ph(a,b)zg(b)f h(a,b)db, (20) can thus uniquely relaté to Pf.

If we differentiateP f=U_,Pf with respect to times, and

whereg is a function ofb only and satisfiegg(b)db=1, so  USe the definition otJ, we discover that

thatP?=P is satisfied. The choice of the functignshall be f

dictated by the initial condition ori, as described below. —— =L U.(s)PT+U4(S)PL(s)PT
This projection has the property th&L,=L,P, and we ds

shall assume also th&L,(s)=0, which is the case for our

S ~
application. +f U(s)PL(s)U(s,s")QL(s")Pf(s')ds’.
Let Q=1—P be the complement of the projectiéh and 0
let us represent the solution of EQL8) as f=Pf+Qf. (26)
Equation (18) can then be written as the pair of coupled _
equations Now usePf=U,Pf, the definition of£(s) from Eq. (19),
_ the relationPU~(s)=U 'P and the fact thauU,*=U,
dPf ~ ~ so that this equation can be rewritten as an equatiorP for
5 ~PLSPT+PL(9)QT, 21) 'S equat i quat
de—L Pf+PL.(s)U Pf+FPL U(s)U(s,s’
dQA]; _ _ ds e (S)Up o (S)U(s)U(s,s")
d—=Q£(s)Pf+Q£(s)Qf. (22
S X QU (s )L(s")Uy(s")Pf(s')ds . (27
At this stage we require that the initial distribution function Trys we have now arrived at an exact equation for the evo-
f(0) satisfiesPf(0)=f(0); this implies that lution of the projection of the distribution onto the relevant
variables. This equation may be, indeed will be, useful be-
f(ab.0)=q(b) | f(ab,0)db=g(b)E(a,0). cause we can make approximations to the memory term to
(a.b.0)=g( )J (a.b.0) 9(D)F(a.0) arrive at a simplified model of the interaction between the
_ o ) variablesa andb.
We are thus assuming that the initial d&(®) is separable  we can now use Eq27) to derive an exact equation for
in aandb, and that the functiog appearing in the projection the evolution of the reduced distribution functibn In order
Opel’ator IS the n0l’ma|lzed |n|t|a| dlst”bu“on Of tIhEVarl' to Organize the resu|ting equation we define
ables. In contrast Grigolini and Marchesoni make the choice
g=g°? where L,g%%=0; this they could do because their g(s)=Uy(s)g, (28

operator_,, did not depend on time. Our projection integrates

out theb dependance and replaces it with that of the initialwhich is the evolution of thé dependant part of the initial

distribution, rather than the decoupled equilibrium distribu-distribution when it is uncoupled to thevariables. We also

tion of b variables. _ introduce Q(s)=U(s)QU (s) as the time-dependent
With our choice ofg it then follows thatPf(0)=f(0), complementary projection, which has the explicit represen-

and we thus hav@f(0)=0. We therefore solve E¢22) for ~ tation

Qf(s) with zero initial data, yielding

S Q(s)=1-9(s) | ab. 29

Q"f'zf U(s,s)QL(s")PT(s))ds’, 23

0 Also letZ(s,s")=U(s)U(s,s’)U1(s’) be the operator that

] o satisfies
whereU(s,s’) is the operator satisfying

d
— Z(s,8")=[Ly+L L.(s)]Z(s,s"), (30
diSU(s,s’)=QL(s)U(s,s’), 24 ds (s,8")=[LatLp(s)+Q(s)Lc(s)]Z(s,s"), (30)

_ ) _ o~ with Z(s’,s’)=1. Usingg(s) andQ(s) in Eqg. (27) and not-
with dataU(s’,s") =1. Using this expressio@f in Eq.(21)  ing thatPf(s)=g(0)F(s) then yields
yields an equation for the functionf
dF — s
o —<=LaF+L(S)F+ | M(s,s")F(s")ds’, (31
ds PL(s)Pf+ Jl) PL(s)U(s,s")QL(s")Pf(s")ds'.

(250  where the operators_c andM are defined by
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Lu(S)F(9) = j Lo(s)(g(S)F(s))db (32) Lo(s)=0(s)-V 39

and where

M(s,s’)F(s’)=f Lo()Z(s,s') E(s)=f Qg(Q,5)dQ=e"90(0) (40)

XQ(s")L(s")(g(s")F(s"))db. (33 . _

e is the mean of the direction after the particle has traveled a
Note thatL .(s) is the average of .(s) against the distribu- path lengths. Note that this mean of the direction is zero if
tion g(s). Equation(31) is an exact equation for the evolu- the initial distribution,g(Q,0), is isotropic, and in all cases
tion of the reduced distribution function; it is the main resultdecays to zero as the particles travel farther and farther
of the elimination method based on the projection operatothrough the medium, reflecting the increasing isotropy of the
formalism in the interaction representation. It reduces to thearticle distribution in the absence of coupling to the spatial
form given by Grigolini and Marchesoni wheln,(s) and  variable. To obtain Eq(40) we have exploited that fact the
Lc(s) are independent of time, arglis chosen as the equi- L? is self-adjoint, andL2Q=2Q; this latter fact follows

librium distributiong®. from the fact that the spherical componentdbfre propor-
tional to Y.
B. Application to the Fokker-Planck equation The final task is to compute the memory term, the third

term of Eq.(31). However, in order to do so, we must com-
pute the operataZ(s,s’) satisfying Eq.(30), which is still a
difficult problem. We write this operator a€(s,s’)
=79%s,s")+2%s,s'), wherez%(s,s’) satisfies

The general elimination procedure described in the pre-
ceding subsection can now be applied to the reduced Fokke
Planck equation, Eq10), in order to develop a diffusion
equation for the position dependent number derBity,s).

To do so, we identifyb of the preceding section with the

directional variable2, anda with the position variabl&. By d _, 2_(5(3)) oo
comparing Eqs(14) and(10), we see that in our problem s 2 (s,8')=— — L<Z (s,s"), (41)
L,=0, (39
_ with Z%(s’,s’) =1, and
2(&(s
Lb(s)=—# L? (35 _
d (&(s) -
— Z%(s,8')=— L°Z%(s,s")—Q(s)Q-VZ%(s,s’)
and identify the coupling operator as ds 2
~ _ A X 0 ’

We consider separable initial dataf(x, Q ,0)  with Z%(s’,s’)=0. We can then at least solve for
—g(ﬂ 0)F(x,0) with 1=[,,9(L, O)d.(), and compute the

evolution ofg(£2,0) from ZO(S,S/):e—llz[e(s)—ﬂ(s')]Lz, (43)
ag &), o o _
s 2 L°g. even though finding®(s,s’) remains difficult. However, it
is clear from the zero initial condition or°(s,s’) and Eq.
This yields (42) thatZ®(s,s") will be first order in the coupling operator,
L.=—Q-V.
N o(s) , We now use the decompositioZ(s,s’)=2%s,s’)
9(&,s)=exp - ——L 9(Q,0), (87 +7%s,s') to induce a similar decomposition o (s,s’)
=M?(s,s')+MS(s,s’). HereM?(s,s’) is defined by
where
S— 0 i
o(s)= | S(ets)as g MR- f 0 7 2%
_ ~ 0 R N
is the distance in penetration length{&) = 1/%(E) that the XQ(s") - 9(£,s")F(x,s")dQ2,
particle has traveled. Note thg€€,s) can be expanded in to '
spherical harmonics, if desired; this is not needed in the fol- (44)

lowing derivations. From the expression fpf(2,s) we eas-
ily compute the second term on the right-hand side of Eqwhere the superscript denotes the order of the operator in
(31) as powers of the coupling operator, aMf(s,s’) is defined by
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~ d
P Cc ’
WQJ ix Z°(s,s’)

Mc(s,s’)F(s’)=J
4
~ 0 ~ -
XQ(s")i - 9(L,8")F(x,s")d€,
i
(45)
wherefli denotes théth component ofﬁ, and where the
summation convention is in effect. BecaLE%(s,g’) does

not act on the spatial variabbe and becausg(€2,s’) is
independent ok, we can rewriteM?(s,s’)F(s') as

Mz(s,s')F(s’)=U 0,2%s,s")
4

2

X Q(s')Q;g(Q,s)dQ F(x,s').

(9Xi(7Xj

(46)

This quantity, once integrated ovein Eq. (31), will, there-
fore, generate a diffusion term under the history integral.
Now let

Dji(s,s')zf4 0,2%s,5")Q(s")Q;g(Q,8')dQ. (47)

We shall evaluate these quantities in stages, starting with

Q(s)Dg(Q,8) = (0~ (s')g(Q,s"). (49

where we have used E@29) for Q(s’). We now apply
Z9%s,s’) to this and use Eq37) to thereby compute

7%(s,8")Q(s")ig(Q,s)=[Z%s,5") %g(Q,8")
~0,(s)g(2,9)], (49

where we have useﬂo(s,s’)g(fl,s’)zg(fl,s) [from Egs.
(37) and(43)]. Thus

Dji(s,s’)=J4 [ﬁjzo(s,s’)ﬁig(ﬁ,s’)

~0i(5")0;9(0,5)1dQ. (50)
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J ﬁjzo(s,s’)ﬁig(f},s’)
:Lwﬁjefﬂae(s%e(s’)]LZQig(Q,SI)
=L 0,0(Q,s") e VAN~ 0Ly,
=Lwéig(ﬁ,s’)e*[“s)*"<S’>]fzj

=e‘[9<s>‘9<5’”f4 0:Q;9(Q,8"), (52)

where the facts that? is self-adjoint andL2Q=2Q have
once again been used. We write this as

f@jzo(s,s')éig(ﬁ,s')dﬁ=e*[9<3>*"<5’>1c1>”(s’),
41
(53

where

and we see that it describes the decay of the correlation be-

tween the particle directions at tim® and the later time
s. In terms of these quantities we now have

Dji(s,s')=e U9~y (s7) — 0;(0);(0) e~ "=,
(55

In order to evaluate the matrie_in general we first ex-
press the Cartesian components{fin polar coordinates,
with u the cosine of the polar angle anblthe azimuthal
angle. Differentiating thez component of Eq(54) yields

The integral over particle directions consists of two termsSolving this gives us
the second of which is immediately seen to be the product of

the mean patrticle directions at the path lengttends’

L 0(5)0,9(Q,9)d0=0i(s) 0y (s)

= 04(0);(0)e™ "9~ <",
(51

On the other hand, the first term is

e 25 RYSTERN
23| aidsiiad, o

and evaluating the action & on u? then yields

dd,, — ) 3

TE_S(Es) | o@us1-3utiad

S 4

=3(6()(1-3®,). (57)
CI)ZZ(S)=%+6_30(S)[(DZZ(O)—% ) (58)

which clearly decays to the isotropic value 1/3saso°.
A similar calculation will show that

L 9(Q,s)(1— u2)cog24)dQ

=e_3‘9(s)f g(ﬁio)(l_MZ)cog(zd;)dfz, (59
A7
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which is a useful result because differentiating yhecom-
ponent of Eq.{(54) yields

dd,,

ds

2(5( s)

(Q s)(—1+3x2)dQ

+@J 9(€,5)(1- u?)cog24)dQ.
4
(60)

It is easy to confirm thafg(fl,s)dﬁz 1 (because it was so
ats=0), and so

ddy, 2(5<s>)( " 3(DZZ)+32(5<s>) K035
ds 2
(61)
where
¥(0)= L 9(Q,0(1-udcog24)dQ (62
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where

d, (s)= f Qng(QsdQ @, (0)+(1—e 349

X[3®,,0)—1] (70

and

®,(5)= L 0,0,0(0,5d0 =1 +e 9D, (0)— 11.

(71)

On the other hand, when the initial distribution is isotropic
0(Q,s)=1/44 for all s and there is no preferred direction; in
this case the® matrix is diagonal with elementgon the
diagonal in any coordinate frame. Thus for azimuthally sym-
metric initial data we can always work in a frame whdrés
diagonal, and we shall do so when convenient.

The final result then is an exact delay-diffusion equation
for the evolution of the direction independent density
F(x,s)

is a measure of the azimuthal asymmetry of the initial angu-

lar distribution. Thus,

Dy (8) =D, (0)+5(1—e 3"9)[3d,(0)— 1+3y(0)],
(63)

which does not necessarily approach 1/&as», although
if the initial distributiong(£2,0) is isotropic thend,,=1/3
for all s, as it should be.

Similarly we can find that

dD,  S(E(9)) 33(&(s))
2

_ —36(s)
ds > #(0)e

(64)

(—1+3d,,)—

and discover

Dy(8)=Py(0) + 5(1—& 3" [302Z0)—1-3y(0)];

(65)

this element also can decay to a value different fipriviore
calculations like those above will yield the cross terms

(I)xy(s) = e*30(3)¢xy(0), (66)
D, ,(s)= 6736(s)¢xz(0), (67)
Dy (s)=e3"9¢,,(0), (68)

all of which decay to zero as—oe.

Since the medium is isotropic the only preferred direc-
tions are those suggested by the initial distribution; when this

is azimuthally symmetric abou®(0) the matrixd(s) is di-
agonal in the coordinate frame in whi€®(0) defines the
direction

d,(s) O 0
P(s)=| O ®,(s) o |, (69
0 0 Dys)

IF 2

as

—QT(S)-VF-FJ'SD”(S,S') F(x,s")ds’
0

C7Xi67Xj

+ISMC(S,S’)F(S’,X)dS', (72
0

where only the operatoM®(s,s’) is unknown. While this
equation is exact, it is not in closed form because we cannot
evaluate the operatat® that appears iM®. However, be-
causeZ® is first order inL, this equation is in a form suit-
able for expansion in powers of the coupling operator. We
shall take up this approximation in Sec. V.

V. APPROXIMATE CLOSED-FORM ELIMINATION
OF THE ANGULAR VARIABLE

In order to develop a tractable, closed-form diffusionlike
equation for the description of the penetration of particles
through the medium we note that E¢72) implies that
dF/ds is first order in the coupling operator. Thus we can
write

F(x,s")=F(x,s)+O(L)(s—5"). (73
But the first history term of Eq(72) is already of second
order inL., while the third term, which containg®, is of
third order. Therefore, we can write

2

F(x,s)
(74)

F J— S
—= —Q(s)~VF+f Djj(s,s")ds’
0

Js &Xi an

correct through terms of second order in the coupling opera-
tor. Writing this in a coordinate frame witf2(0) along the

Z axis, and assuming azimuthally symmetric initial data for
simplicity, we have
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JF JF I%F PFE  9%F We shall make use of these expressions in our examples
——=—M(S) —=+Dy(s) =z +D ()| =z + === | later.
s 9z 9z o=y (75) The asymptotic behavior of the diffusion coefficients for
small and larges are also of interest, as they help us under-
where stand how the transport process represented by (Eg).
o transforms from the Fermi-Eyges behavior to isotropic diffu-
m(s)=|Q(0)|e" ¥ (76)  sion. Again for the case of &function distribution of initial
directions, we expand the expressions in E@3) and(78)
is a time-dependent mobility, and for smalls to find
e 09 s , , D~ 13(E)2s?, (81
Di(s)= — J [67)+ e 2/ )[30,(0)~ 1] 3B
0 _
_ D, ~33(Eg)s™. (82
_ 2,—6(s") ’
3|20l 1ds 77 We observe thaD,(s) vanishes faster thab, (s), and,
and hence, can be ignored in E(.5) in the smalls limit. Since

m(s)~1 in this limit, the initial evolution(Fermi-Eyge} of
e 9 rs ) ) ) the beam is described by
D.(8)=—5— fo[zqmme“ )+ 4[5 —e 2005

oF  9F 1D,(8) P*F . 92 3
= S .
X[3®(0)—1]]ds'. (79) os gz BT aE T ay?

This equation represents streaming along thdirection,

Equation(75) was first presented by Akcasu and Larsen hich i lel to the b X ied b d
as a phenomenological diffusion equation that exactly repro?/ich IS parallel to the beam axis, accompanied by a sprea

duces the first two spatial momerts(s)) and(x(s)x(s)") of t_he beam on a plane perpe_ndicular to maxig, as de-
in an infinite homogeneous medium, although they assume_ﬁcr'bed by the. second term. This transyerse motlon, however,
- AT Py is not a diffusion process becauBe (s) is not independent

that g(£2,0)=5(2—€y), so that (0)=1, [2(0)]=1, of s, and the mean-square displacement on a transverse plane
@, (0)=0. The systematic derivation of E(/5) as the first .~ ™ X
is not proportional tcs, but rather behaves as

two terms in an expansion in powers of the coupling operator
is con_5|dered to be the main contribution of this paper. The (x2)~23(Eq)s®. (84)
formalism of course allows us to calculate the next term in
this expansion, although we do not attempt to do so here. \we compare this result to the short time limit of the mean-
square displacement in ttedirection, which follows from
VI. SPECIAL CASES AND LIMITING BEHAVIORS Eqg. (81 as:

In order to illustrate the physical implications of the (x? N%g_(EO)ZS{ (85)
above results quantitatively, we assume that the transport
cross section for electrons is independent of the incident erfFhus we find that the transverse spread of the beam is larger
ergy, but still allows energy transfer to the scatterer. In thishan the longitudinal spread in the early stages of beam pen-
special cas#(s)=2s. This simple model, however, is more etration, that is, wher&(£(0))s<1.
realistic in the case of photon transport because photon scat- The larges limits of D (s) and D, (s) are obtained by
tering (under the circumstances typical of diffusive wave ex-assuming thatd(s) diverges ass—o, and then applying
periments is quasielastic, and the energy loss on scattering. 'Hd pital’s rule to the indeterminate ratio obtained after re-
expressed as a change in the frequency of the incident pheiacing the first factoe™ *® by 1/ in Egs.(77) and(79),
ton, is neglected9,10]. This means that the energy loss Per again in the Cas@(bio)zg(ﬁ_flo)_ One finds that both

unit length S(E) is zero in the above general formulation, diffusion coefficients approach the same limit
and that photons maintain their initial energy. Although

the photon scattering cross section is strongly energy depen- 1

dent, it is always evaluated at the initial eneffgy, so that Dy(s)~D,(s)~———=D(s) ass—x= (86
2(&(s"))=3(Ey), andé(s)=3(Eg)s, as in the case of elec- 3x(s)

trons. In this special case, and also assuming an indtial op, the other hand, the mobilitp(s) vanishes exponentially
distribution in direction along the axis, the diffusion coef- i, this limit, and so Eq(75) reduces to

ficients reduce to

JF
3 _ 3 Ss_ 113 —=D(s)V?F (87

Dy(s)= iE_ 1-3e *5+3e 22S—g 5= %, s
3 3e (79 which describes isotropic diffusion. Thus we see that Eq.
(75) will describe the transition from the Fermi-Eyges theory
1 3 1 u_sed .in electron transport—dqse calculatilons.to the isotropic
D,(S)=——]1——e 54+ = g 35|, (go)  diffusion behavior assumed in photon diffusive wave spec-

33 troscopy.
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__When the initial distribution is isotropicg,(0)=1/3, 1.00
Q(0)=0, d,(0)=0 andy(0)=0. Equationg77) and (78)
then tell us that the diffusion coefficients are equal, althougt 0.75
still s dependent
0.50
1 —6(s) s o(s’)
Di(s)=D.(s)=Do(s)=3 € foe ds’ (88 0.25
and Eq.(75) reduces to the isotropic diffusion equation with r 0p {H :
a time-dependent diffusion coefficie@y(s). When 6(s)
=s2, this latter becomes -0.25
1 — -0.50
Do(s)=——(1-e"%). (89)
3% -0.75
It is interesting to note that the modified diffusion equation 1.00
(75) differs from the conventional diffusion theory, evenin "=~ 0.25 0.5 0.75 1 1.251.51.75 2
this case of an isotropic source, for distances less than tt z

penetration depth* =1/3..
FIG. 1. The evolution of a cloud of particles injected into an

VII. SOLUTION IN AN INFINITE MEDIUM infinite medium with constant penetration cross secffonEach
ellipse contains 50% of the total number of particles at different
A. Pulsed source total path lengths, with s running from 0 to 2 in steps of 0.25. The

The general solution of Eq75) for an arbitrary initial solid dots show the mean particle position, which approaches the
directional distribution of particles located initially at Point marked with a circle as—co. The outer ellipse corresponds

%4(0,05), and withQ(0) once again defining theaxis, is to s=2.0; the path length for the other ellipses are easily identifi-
o) . P . ' ble by counting in from the outer one in steps of 0.25.
easily constructed in an infinite medium as a

1 which _shows that the mean position of the particle stops at
35 2 Zo+ 172 in the limit of s—o. Hence,|* =1/ can be inter-
(2m) o (s)oy(s) preted as the penetration distance of the beam. The
[z—(z(s))]> x2+y? asymptotic isotropic diffusion, described by E&7), takes
xexp{ - 7 5 } (90) place about this mean position. In contrast, at finite times the
207(s) 207 (s) : . . L .
particle displays an anisotropic diffusion motion around
(x(s))=(z(s)), with different, time-dependent, longitudinal,
and transverse diffusion coefficients.
s Thus, the physical content of the infinite medium solution
(z(s))=zo+J m(s’)ds’ (91  in Eq.(90) can be summarized as follows: We start with a
0 large burst of particles all located at a single point, and mov-
) ) _ ing in thez direction. As time elapses, these particles begin
and whereoj ando’; denote parzallel and transverse spatialgiffusing anisotropically, forming a cloud which looks like
variances, respectively, i.e.of(s)=(z"—(z(s))?) and  an oblate rotational ellipsoid about teaxis. The center of
ol (s)=(x*)=(y?), and are given by the cloud moves along theaxis while its size grows aniso-
tropically as it moves. The center of the cloud eventually
stops at the penetration point, a distahte 1/2 (for % con-
stant as described abgvieom the injection point. The shape
of the cloud gradually becomes spherical as time passes. In
) s the asymptotic regime, the particles execute an isotropic dif-
oi(s)= Zf D,(s")ds". (93 fusion motion about the penetration point, and the size of the
0 cloud continues growing, becoming increasingly spherical
nWi'[h a mean-square radius that grows I{(s)?)=2I*s.
o ; : o In Fig. 1 we plot, as a function of path length traveled, the
position(z(s)) of the particles moves in the initial direction ellipse that contains half of the particles which were initially

with a exponentially decreasing velocigy #®). When the .. s . _
cross section is independent of energy in electron transpor&meaed by a monodirectional, monoenergetic, pomt source
t (z,r)=(0,0), wherer?=x2+y?. All of the particles ini-

and when the scattering is elastic in the case of photon tran lally travel in the positivez direction. Each ellipse contains

F.(X,8)=

where(z(s)) denotes the mean position

aﬁ(s):zf:DH(s')ds', (92

As expected from the isotropy of the medium, the mea

port, 6(s) =sX, and Eq.(91) becomes 50% of the total number of particles at different total path
s lengthss, with s running from 0 to 2 in steps of 0.25, where
(2(s)) =120+ L, (94)  the units of distance are3/ which is taken to be indepen-

3 dent of energy. The dots, at the center of each ellipse, show
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the mean particle position as it penetrates into the medium. 9

At long times this mean particle position comes to a stop at —=Se=3,0+p
S . - JE

(z,r)=(1,0), which is marked with a small circle. At

=2.0, the last path length shown, the mean position hag;sing ds/dE= —1/S and Eq.(72) we can then derive an

reachedz=0.865. o o exact equation for the steady state flux. More usefully for the
The expression oF., given in Eq.(90) is, with a proper  case of a monoenergetic, monodirectional point source, we

normalization[9,10] the path-length distribution of particles ¢an yse the approximate diffusion equation &) to elimi-

arriving at a poini in an infinite medium. This path-length nate gF/gs and arrive at the slowing down equation
distribution plays a central role in diffusive wave spectros-

copy[9,10].

dF

s (99

ds
—<(E) dE’

&Zqo

Jd de do  do
E Se—2a¢=m(E) 22 Pz D

.
ax? gy
B. Steady state solutions (100

In this section we calculate the energy-dependent scalafhe coefficients in this equation denote(E)=m(s(E)),
particle densityn..(x,E) due to a constant point source of D;(E)=D,(s(E)), andD, (E)=D, (s(E)). They can easily
electrons 8(x—Xo) S(E—Eg) (2 — Q) in an infinite me- be obtained from Eq¢76), (77), and(78). These expressions
dium. The particle density, or more usefully the particle flux, all contain the functiord(s), defined by Eq(38). By chang-
is important because it enters in the dose calculations ifng the variable froms’ to E’ we obtain® (E) = 6(s(E)) as
nuclear medicine applications. We start_with(x,E,t), . 2_(E’)
which is obtained by integrating E¢7) over Q (E):j 0 SE) dE’. (101)

E
n(x,E,t)=p(E)S(E—E(t))F(x,t), (95
The same procedure is used to obtain
where E(t) =&(s(t)) and satisfiesdE(t)/dt=—v(E)S(E). m(E)=e ©® (102
The only unknown in Eq(95) is F(x,t); hence, ifF(x,t) is '

determined for a pulsed point source in the medium with 1 Eo 1
. . . —0(E) O(E") -0O(E")
appropriate boundary conditions, the¢x,E,t) can be inter- D(E)=3e SED [e™='—3e
preted as the time-Green'’s function, and the steady state so- E
lution can be constructed as +29_2®(E’)]dE/’ (103
o) s l E l ’ ’
Iﬂ(x,E):fO n(X,E,t)dt=|O(E)f0 F(x,t) S(E—E(t))dt. D.(E)=3 e*@’(E)LO SE) [e®E)—e 20E)dE’
(96) (104
Changing the integration variable in this equation froto ang V&’?f thereby hfa;ve explicit ﬁXeri'SSiOI’IS C1;or the mobility
- _ : and diffusion coefficients in the slowing down equation
E usingdE(t)/dt v(E)S(E) yields (100
, = For small energy losses, for whidk,—E is treated as a
n(x,E)=p(E)fEO F(x,t(E ’))5(E, E") dE’. (977 small parameter,®(E) can be approximated a6 (E)
0 v(E)S(E') ~(Ey—E)X(E)/S(E). Hence, in the lowest order i,
—E,
In obtaining this result we have useH(0)=E,, and —
E(t)—0 ast—o. Evaluating the integral in Eq97) and _ 2(E)
introducing the scalar flux(x,E) =v(E)n(x,E), we find, in m(E)~1-(E-Eo) S(E)’ (109
general _
D\(E fEO ~_| (- =E) sz' 106
S(E)¢(x,E)=p(E)F (x,t(E)=Pp(E)F(x,S(E)). (98) B~ sEy (BB gEry| 9B 106

Thus, we can obtain all the properties of the steady state flugnd

explicitly from the knowledge oF(x,s), for which we have £, 2_(E’)

already derived exact and approximate equations; we simply DL(E)NJ (Eg—E') =0—~ dE/. (107

replaces in the latter bys(E), the path length traveled by E SY(E')

the particle in slowing down from the ener@y to the en-

ergy E. An approximation ta~(x,s) has already been con-

structed(in the preceding sectigrior an infinite medium, so

we can now obtain explicitly all the properties of the flux. 9 de
However, it is sometimes more convenient to start with a JE Se—Z,¢=m(E) Gz D |~

diffusion equation for the flux, especially in applications in-

volving finite geometries. We obtain such an equation byWwhen m(E) is replaced by unity, and absorption is ne-

differentiating both sides of E498) with respect tcE, yield-  glected, this equation reduces to the Fermi-Eyges result

ing [1,2].

Since Dy(E) is of third order inE—E,, the slowing down
equation(100), reduces for small energy losses to

(108
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But, whereas, this latter result is valid only in the lowest The approximate diffusion equation is obtained from an
order inE—E,, the slowing down equatiofl00) is valid at  exact equation for the density E(72), which is valid for

all energies; thus it does indeed extend the Fermi-Eyges rexbitrary separable initial distributions, by expanding the
sult to the full energy range. It is worth remembering that theusual memory function in the projection operator formalism
only approximation required to derive the slowing downin powers of the coupling operatar, between the direction
equation(100 from the Fokker-Planck equatidd), was the and spatial variables, and then retaining terms through sec-
expansion of the memory kernel in powers of the couplingond order inL.. The result of this is Eq(74). When the
operator. It's validity or accuracy can, therefore, be examinitial angular distribution is azimuthally symmetric this

ined by looking at the magnitude of the coupling term. equation reduces to Er5), which was first derived in Ref.
The full solution of the slowing down equation in an in- [3] by a different method. The longitudinal and transverse
finite medium without absorption is just diffusion coefficients, and the mobility in this equation are
time dependent, and contain information regarding the initial
S(E) g (E)= 1 angular distribution of particles during the early stages of
ki (27)%?0%(E) o (E) particle penetration where they still maintain their pencil-
o 2 o beam distribution. This information gradually decays away

x @~ [@=2EN 2oL (BIXHy 20 (B)] so that at later stages the particles execute increasingly iso-

(109 tropic diffusion about their mean position. This situation is
different from the conventional treatment of monodirectional
where beams in terms of an uncollided flux that is separated from
an isotropic collision source. Since in the present problem
the scattering is forwardly peaked, the initial direction is re-
membered even after many collisions.
We solved the new diffusion equation exactly for the par-
E, 1 ticle densityF..(x,s) in a homogeneous infinite medium for
of(E)z Zf @ D, (E")dE, (111 a monoenergetic and monodirectional burst of particles at the
E origin. This solution was used to study the penetration and
the transverse and longitudinal spread of the particle cloud as
they are transported into the medium. The evolution of the
o Eo shape of the particle cloud from pencil-like to spherical is
Z(E)=f O(E")dE'. (112 quantitatively displayed in the figure.

E The modified diffusion equation obtained in this paper is
is the mean position of the particles after they have slowed@PPlicable to the calculation of the path-length distribution,
down to energyE. which plays a central role in diffusive wave spectroscopy

The calculation of dose rates in a medium due to both 49,101 With proper normalizatiof.(x,s) is the path-length
pulsed point source and a constant point source of particledistribution of particles arriving at point via different paths
in terms of corresponding densiBL(x,s) is straightforward ~ through an infinite mediuni9,10]. It has been calculated

2 Eo 1 ’
o-H(E)=2JE 557 DIENdE, (110

and

[4], and will not be discussed here. until now by assuming that particles that are actually inserted
at the origin instead appear instantaneously at the penetration
VIIl. CONCLUSIONS point located* away, and by then solving the ordinary iso-

tropic diffusion equation for an isotropic point source located

The purpose of this paper was to develop a new derivatioat this displaced point. Therefore, those results are valid only
of the approximate diffusionlike equatiai@5) for the par- at linear distance$| from the origin that are much larger
ticle densityF(x,s). This derivation begins from the Fokker- thanl*. Since the solution of the modified diffusion equation
Planck description of particle transport, which is itself anobtained in this paper is valid at all distances, the path-length
approximation that is valid when the scattering is forwardlydistribution can be calculated without the above restriction.
peaked and the energy change in scattering is small. The nelw future work we intend to compare the path-length distri-
derivation was based on the elimination of the direction vari-butions obtained by these two approaches quantitatively.
able © through an elimination scheme based on Zwanzig's
projection operator formalism in the interaction representa- ACKNOWLEDGMENTS
tion. The elimination procedure closely follows the one de-
scribed by Grigolini and Marchesof8], but with a different A.Z.A. thanks the Alexander von Humboldt Stiftung for
projection operator which is more appropriate to the transtheir support. J.P.H. is supported in part by the NSF under
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